Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide

نویسندگان

چکیده

With an increase in energy consumption globally, Fischer-Tropsch (FT) synthesis is a good alternative for producing fuels and chemicals from coal, natural gas or biomass. Among them, coal to liquids has been put into production countries that have large reserves. In this process, Fe-based catalysts are commonly used due their earth abundance, comparatively wide operation range ready availability handle low H2/CO ratio coal. Despite extensive applications, the kinetic mechanistic understandings of Fe carburization FT reaction on Fe-carbides relatively limited complexity phase composition applied catalysts. This review summarizes current state knowledge Fe-carbide with emphasis underlying mechanism. Specifically, employment model catalyst, such as Raney Fe, could provide convenient way furnish information regarding subsequent reaction. A major challenge further understanding catalytic reactions occurring at surface correlating activity selectivity specific active site. To address issue, advancements both DFT calculations science techniques highly demanded.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective synthesis ofa-olefins on Fe-Zn Fischer-Tropsch catalysts

Fe/Zn oxides promoted with K and Cu selectively produce a-olefins at typical FischerTropsch synthesis conditions (2/1 H2/CO, 1 MPa, and 270°C). The simultaneous presence of K and Cu introduces a synergistic activity enhancement while maintaining the high oletrm selectivity obtained by alkali promotion. Structural and morphological differences in Fe-Zn oxides prepared from ammonium glycolate com...

متن کامل

The Effect of Temperature on Product Distribution over Fe-Cu-K Catalyst in Fischer-Tropsch Synthesis

The iron-based catalyst was prepared by a microemulsion method. The composition of the final nanosized iron catalyst, in terms of the atomic ratio, contains 100Fe/4Cu/2K. The experimental techniques of XRD, BET, TEM, and TPR were used to study the phase, structure, and morphology of the catalyst. Fischer-Tropsch synthesis (FTS) reaction test was performed in a fixed bed reactor under pressure o...

متن کامل

Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts.

Water increases Fischer-Tropsch synthesis (FTS) rates on Ru through H-shuttling processes. Chemisorbed hydrogen (H*) transfers its electron to the metal and protonates the O-atom of CO* to form COH*, which subsequently hydrogenates to *HCOH* in the kinetically relevant step. H2 O also increases the chain length of FTS products by mediating the H-transfer steps during reactions of alkyl groups w...

متن کامل

Effect of Structural Promoters on Fe-Based Fischer–Tropsch Synthesis of Biomass Derived Syngas

Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer– Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO2 concentrations are somewhat higher. Here, we repor...

متن کامل

Synthesis and Characterization of Fe-Catalyst for Fischer-Tropsch Synthesis Using Biosyngas

Fischer–Tropsch technology has gathered renewed interest in the energy industry in recent times for synthesis of diesel and gasoline. The synthesis of linear hydrocarbon diesel fuel (having high cetane number) through Fischer–Tropsch synthesis (FTS) reaction requires syngas with high H2/CO molar ratio. Producer gas obtained from biomass gasification has low H2/CO ratios, with significant conten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2023

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal13071052